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An EOQ model for deteriorating items with time
varying demand and partial backlogging
H-J Chang* and C-Y Dye

Tamkang University, Taiwan

In the classical economic order quantity model, it is often assumed that the shortages are either completely backlogged or
completely lost. However, in some inventory systems, it is more reasonable to assume that the backlogging rate is
dependent on the length of the waiting time for the next replenishment. The longer the waiting time is, the smaller the
backlogging rate would be. In this paper, we focus on the effect of the backlogging rate on the economic order quantity
decision. Numerical examples are presented to illustrate the model.
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Introduction

In the last two decades, the models for inventory replen-

ishment policies involving time-varying demand patterns

have received the attention of several researchers. The

fundamental result in the development of economic order

quantity model with time-varying demand patterns is that

of Donaldson1 who established the classical no-shortage

inventory model with a linear trend in demand over a

known and ®nite horizon. However, his procedure was

too complex and tedious in computing. The complexity

of Donaldson's approach has led to the development of

heuristic methods. Silver,2 Phelps,3 Ritchie,4 and Teng,5

derived simple heuristic procedures for Donaldson's

problem.

Dave and Patel6 ®rst considered the inventory model for

deteriorating items with time-varying demand. They

considered a linear increasing demand rate over a ®nite

horizon and a constant deterioration rate. Sachan7 extended

Dave and Patel's model to allow for shortages. Datta and

Pal8 presented an EOQ model for items with variable

deterioration rate and power demand pattern. Researchers

including Mudeshwar,9 Goswami and Chaudhuri,10 Goyal

et al,11 Hariga,12 Chakrabarti and Chaudhuri,13 Benkher-

ouf,14 and Hariga and Alyan15 developed economic order

quantity models that focused on deteriorating items with

time-varying demand and shortages.

In practice, some customers would like to wait for

backlogging during the shortage period, but the others

would not. Consequently, the opportunity cost due to

lost sales should be considered in the modeling. Many

researchers9±16 assumed that shortages are completely

backlogged. A recent article17 in the ®eld of deteriorating

items with shortages has revealed the economic order

quantity with a known market demand rate. In this paper,

the backlogging rate was assumed to be a ®xed fraction of

demand rate during the shortage period. However, in some

inventory system, for many stock such as fashionable

commodities, the length of the waiting time for the next

replenishment becomes main factor for determining

whether the backlogging will be accepted or not. The

longer the waiting time is, the smaller the backlogging

rate would be. Therefore, the backlogging rate is variable

and is dependent on the waiting time for the next replen-

ishment.

This present work attempts to model the situation where

the demand rate is a time-continuous function and items

deteriorate at a constant rate with partial backlogging.

Assumptions and notations

The mathematical model in this paper is developed on the

basis of the following notations and assumptions:

Notations

A � Ordering cost of inventory, $=per order.

C1 � Holding cost, $=per unit=per unit time.

C2 � Shortage cost, $=per unit=per unit time.

C3 � Opportunity cost due to lost sales, $=per unit.

C4 � Cost of the inventory item, $=per unit.

Ri � The amount of inventory carried during the ith

cycle.

Di � The amount of deteriorated items during the ith

cycle.
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Si � The amount of shortage during the ith cycle.

Bi � The amount of lost sales during the ith cycle.

y � Deterioration rate, a fraction of the on-hand

inventory.

I �t� � The inventory level at time t.

n � The number of replenishment cycles during the

planning horizon.

si � Time at which shortages start during the

ith cycle, i � 1; 2; . . . ; nÿ 1.

ti � Time at which the ith replenishment is made,

i � 1; 2; . . . ; n.

Ti � Length of the ith cycle, i � 1; 2; . . . ; n.

Assumptions

(1) A single item is considered with a constant rate of

deterioration over a known and ®nite planning horizon

of length H.

(2) The replenishment occurs instantaneously at an in®nite

rate.

(3) There is no repair or replacement of deteriorated units

during the planning horizon. The items will be with-

drawn from warehouse immediately as they become

deterioration.

(4) The demand rate f �t� is a time continuous and mono-

tonic function, and f �t�=f 0�t� is non-decreasing in t,

where f 0�t� denotes the ®rst derivative f ��� with respect

to t and f 0�t� 6� 0 for all t.

(5) Shortages are allowed in all cycles and each cycle starts

with shortages.

(6) During the shortage period, the backlogging rate is

variable and is dependent on the length of the waiting

time for the next replenishment. The longer the waiting

time is, the smaller the backlogging rate would be.

Hence, the proportion of customers who would like to

accept backlogging at time t is decreasing with the

waiting time (ti ÿ t) waiting for the next replenishment.

To take care of this situation we have de®ned the

backlogging rate to be 1=1� a�ti ÿ t� when inventory

is negative. The backlogging parameter a is a positive

constant, siÿ1 4 t < ti.

Model formulation

According to the notations and assumptions mentioned

before, the behaviour of inventory system at any time t

can be depicted in Figure 1. From Figure 1, it can be seen

that the depletion of the inventory occurs due to the

combined effect of the demand and the deterioration

during the interval [t1; si] of the ith replenishment cycle.

Hence, the variation of inventory with respect to time can

be described by the following differential equation:

dI �t�
dt
� ÿyI �t� ÿ f �t�; ti 4 t < si; �1�

with boundary condition I �si� � 0; i � 1; 2; . . . ; n. The

solution of (1) may be represented by

I �t� � eÿyt

�si

t

eyuf �u�du; ti 4 t < si: �2�

From (2), the amount of inventory carried during the ith

cycle is given by

Ri �
�si

ti

eÿyt

�si

t

eyuf �u�du dt � 1

y

�si

ti

�ey�tÿti� ÿ 1�f �t�dt: �3�

For an inventory with a constant deterioration rate of y, the

amount of deteriorated items during the ith cycle is given

by

Di � yRi �
�si

ti

�ey�tÿti� ÿ 1�f �t�dt: �4�

In addition, the depletion of inventory occurs due to the

demand backlogged during the interval [stÿ1; ti]. The

Figure 1 Inventory level I(t) vs time.
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variation of inventory with respect to time can be described

by the following differential equation:

dI �t�
dt
� ÿ f �t�

1� a�ti ÿ t� ; siÿ1 4 t < ti; �5�

with boundary condition I �siÿ1� � 0; i � 1; 2; . . . ; n. The

solution of (5) is

I �t� � ÿ
�t

siÿ1

f �u�
1� a�ti ÿ u� du; siÿ1 4 t < ti: �6�

From (6), the amount of shortage during the ith cycle is

given by

Si �
�ti

siÿ1

�t

siÿ1

f �u�
1� a�ti ÿ u� du dt �

�ti

siÿ1

�ti ÿ t�
1� a�ti ÿ t� f �u�du:

�7�

Moreover, the amount of lost sales during the ith cycle is

given by

Bi �
�ti

siÿ1

1ÿ 1

1� a�ti ÿ t�
� �

f �t�dt

� a
�ti

siÿ1

�ti ÿ t�
1� a�ti ÿ t� f �t�dt: �8�

As shown above, we can formulate the total inventory

cost as the sum of the ordering cost, holding cost, deteriora-

tion cost, shortage cost and opportunity cost due to lost

sales as follows:

TC � nA� C1

Pnÿ1

i�0

Ri�1 � C4

Pnÿ1

i�0

Di�1

� C2

Pnÿ1

i�0

Si�1 � C3

Pnÿ1

i�0

Bi�1

� nA� C1 � C4y
y

Pnÿ1

i�0

�si�1

ti�1

�ey�tÿti�1� ÿ 1�f �t�dt

� �C2 � C3a�
Pnÿ1

i�0

�ti�1

si

�ti�1 ÿ t�
1� a�ti�1 ÿ t� f �t�dt �9�

The objective of this paper is to determine the optimal

number of replenishments n�, the optimal replenishment

points t�i , and the optimal shortage points s�i to minimise the

total cost of the inventory system.

For a given positive integer n, the necessary conditions

for TC to be minimum are

@TC

@ti
� �C2 � C3a�

�ti

siÿ1

1

�1� a�ti ÿ t��2 f �t�dt

ÿ �C1 � C4y�
�si

ti

ey�tÿti�f �t�dt � 0; i � 1; 2; . . . ; n:

�10�
@TC

@si

� �C2 � C3a�
�ti�1 ÿ si�

1� a�ti�1 ÿ si�
ÿ �C1 � C4y�

y
�ey�siÿti� ÿ 1� � 0;

i � 1; 2; . . . ; nÿ 1: �11�

It is obvious to see that once t1 is known,

s1�t1�; t2�t1�; s2�t1�; . . . ; tn�t1�, and sn�t1� can be obtained

successively from (10) and (11) for increasing demand

patterns. Similarly, once tn is known, we can use a

numerical search method to obtain snÿ1�tn� from (10).

Then tnÿ1�tn� can be easily solved from (11). By repeating

this procedure mentioned above, snÿ1�tn�; tnÿ2�tn�; . . . ;
t1�tn�, and s0�tn� can be determined orderly from (10) and

(11) for decreasing demand patterns.

To acquire the optimal replenishment policy, for a given

value of n, that minimizes the total inventory cost, the value

of t1 should be selected to satisfy sn�t1� � H for increasing

demand patterns and the value of tn should be selected to

satisfy s0�tn� � 0 for decreasing demand patterns.

We can show that sn�t1� is increasing in t1. Besides, it is

not dif®cult to check from (10) and (11) that sn�0� < H and

that sn�H� > H. Therefore, there exists a unique solution t�1
satisfying sn�t�1� � H in the interval [0, H] for increasing

demand patterns. On the other hand, since s0�tn� is increas-

ing in tn, from (10) and (11), we have s0�0� < 0 and

s0�H� > 0. Hence, the uniqueness of the optimal replenish-

ment policy for decreasing demand patterns can be

provided. (see Appendix A for details).

Moreover, the optimal replenishment policy has the

following useful properties:

(i) If f �t� is an increasing function, then T1 >
T2 > � � � > Tn.

(ii) If f �t� is a decreasing function, then T1 <
T2 < � � � < Tn. (see Appendix B for details).

Numerical example

To illustrate the preceding theory, the following examples

are considered.

1178 Journal of the Operational Research Society Vol. 50, No. 11



Exponential demand patterns

Example 1

f �t� � 10e0:98t; A � 250; C1 � 40; C2 � 80;

C3 � 30; C4 � 200; y � 0:08; H � 4;

a � 20:

From (10), (11) and sn�t1� � H, the total cost TC can be

found for different values of n. Computed results and the

optimal replenishment policy are shown in Table 1. The

optimal values of n and TC are n� � 11 and TC� � 6190:6.

Example 2

f �t� � 500eÿ0:98t; A � 250; C1 � 40; C2 � 80;

C3 � 30; C4 � 200; y � 0:08; H � 4;

a � 20:

From (10), (11) and s0�tn� � 0, the total cost TC can be

found for different values of n. Computed results and the

optimal replenishment policy are shown in Table 2. The

optimal values of n and TC are n� � 12 and TC� � 6082:5.

Linear demand patterns

Example 3

f �t� � 40� 3t; A � 250; C1 � 40; C2 � 80;

C3 � 30; C4 � 200; y � 0:08; H � 4;

a � 20:

Computed results and the optimal replenishment policy

are shown in Table 3. The optimal values of n and TC are

n� � 8 and TC� � 4231:4.

Example 4

f �t� � 50ÿ 3t; A � 250; C1 � 40; C2 � 80;

C3 � 30; C4 � 200; y � 0:08; H � 4;

a � 20:

Computed results and the optimal replenishment policy

are shown in Table 4. The optimal values of n and TC are

n� � 8 and TC� � 4124:6.

Sensitivity analysis

In this section, we examine the effects of change in the

backlogging parameter a on the optimal total cost and the

optimal number of replenishments. A sensitivity analysis is

performed by considering the same numerical examples.

Seven different values of a are adopted, a � 1; 2:5; 5; 10;
25 and 50. Computed results are shown in Table 5.

Table 1 Optimal solution of Example 1

n TC i ti si

1 12216.3 1 1.1273 1.5454
2 10150.5 2 1.6623 2.0033
3 8844.5 3 2.0693 2.3580
4 7964.8 4 2.4043 2.6548
5 7354.7 5 2.6905 2.9118
6 6926.1 6 2.9408 3.1390
7 6627.6 7 3.1636 3.3431
8 6424.6 8 3.3643 3.5283
9 6293.9 9 3.5470 3.6980

10 6219.8 10 3.7147 3.8546
11 6190.6* 11 3.8697 4.0000
12 6197.5
13 6234.0
14 6295.1
15 6376.9

TC� 6190.6
n� 11

Table 2 Optimal solution of Example 2

n TC i ti si

1 16540.7 1 0.0127 0.1437
2 12240.4 2 0.1576 0.2987
3 9973.3 3 0.3140 0.4670
4 8596.5 4 0.4840 0.6510
5 7701.5 5 0.6702 0.8542
6 7099.8 6 0.8761 1.0811
7 6690.9 7 1.1068 1.3382
8 6416.3 8 1.3695 1.6355
9 6239.3 9 1.6752 1.9887

10 6134.7 10 2.0435 2.4266
11 6086.5 11 2.5157 3.0126
12 6082.5* 12 3.2655 4.0000
13 6113.7
14 6173.4
15 6256.5

TC� 6082.5
n� 12

Table 3 Optimal solution of Example 3

n TC i ti si

1 5645.1 1 0.1240 0.5417
2 5241.5 2 0.6582 1.0690
3 4915.5 3 1.1791 1.5833
4 4654.3 4 1.6879 2.0860
5 4456.0 5 2.1859 2.5782
6 4321.6 6 2.6738 3.0608
7 4249.0 7 3.1526 3.5345
8 4231.4* 8 3.6229 4.0000
9 4259.8

10 4325.2

TC� 4231.4
n� 8
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The following inferences can be made from the results in

Table 5.

(i) Increasing the value of a will result in an increase in

the optimal total cost and the optimal replenishment

times.

(ii) As the value of a increases, the optimal total cost be-

comes close to the optimal total cost without shortage.

(iii) The optimal total cost with partial backlogging is more

sensitive to a when it's value is small.

Conclusions

In this paper, we develop an EOQ model for deteriorating

items with time-varying demand and partial backlogging.

In particular, the backlogging rate is considered to be a

decreasing function of the waiting time for the next

replenishment. This assumption is more realistic in the

market. As a increases, the results indicate that the optimal

total cost increases and becomes close to the optimal total

cost without shortage. Moreover, the total cost is more

sensitive to a when the value is small.

Appendix A

(i) For increasing demand patterns, sn�t1� is increasing in

t1 and there exists a unique real solution t�1 2 �0; H�
satisfying sn�t�1� � H.

(ii) For decreasing demand patterns, s0�tn� is increasing in

tn and there exists a unique real solution t�n 2 �0; H�
satisfying s0�t�n� � 0.

Proof

(i) If f �t�=f 0�t� is non-decreasing in t for ti 4 t 4 si, it

implies that f �ti�=f 0�ti�4 f �t�=f 0�t�. Using the result,

we obtain f 0�t�4 � f 0�ti�=f �ti�� f �t�. Multiply both sides

by ey�tÿti�, since ey�tÿti� > 0 and yey�tÿti�f �t� > 0 for

ti 4 t 4 si, we have

ey�tÿti�f 0�t� � yey�tÿti�f �t�
4 ey�tÿti� f 0�ti�

f �ti�
f �t� � yey�tÿti�f �t�: �12�

In (12), multiply both sides by �C1 � C4y� and inte-

grate with respect to t between ti and si, the previous

inequity can be written as follows:

�C1 � C4y� ey�siÿti�f �si� ÿ f �ti�
� �

4 �C1 � C4y�
f 0�ti�
f �ti�
� y

� ��si

ti

ey�tÿti�f �t�dt: �13�

Recalling (10) and using the fact that f �ti�=
f 0�ti�5 f �t�=f 0�t� for siÿ1 4 t 4 ti, we have

�C1 � C4y� ey�siÿti�f �si� ÿ f �ti� ÿ y
�si

ti

ey�tÿti�f �t�dt

" #

4 �C2 � C3a�
�ti

siÿ1

f 0�t�
�1� a�ti ÿ t��2 dt:

After integrating by parts in the right hand side, the last

inequality can be rewritten as

�C1 � C4y� ey�siÿti�f �si� ÿ f �ti� ÿ y
�si

ti

ey�tÿti�f �t�dt

" #

4 �C2 � C3a�
�ti

siÿ1

ÿ2a

�1� a�ti ÿ t��3 f �t�dt

 

� f �ti� ÿ
f �siÿ1�

�1� a�ti ÿ siÿ1��2
�
: �14�

Table 5 Sensitivity analysis

a
Complete Without

backlogging 1 2.5 5 10 25 50 shortage

Example 1 TC� 5078.6 5312.4 5537.7 5761.9 5993.4 6243.1 6368.5 6772.4
n� 10 10 11 11 11 11 12 14

Example 2 TC� 5003.4 5227.0 5449.0 5664.1 5890.5 6131.0 6247.5 6425.5
n� 10 10 11 11 11 12 12 13

Example 3 TC� 3490.1 3622.3 3760.2 3909.7 4077.9 4276.0 4393.9 4575.2
n� 7 7 7 7 8 8 8 9

Example 4 TC� 3410.7 3563.7 3668.0 3810.2 3972.9 4166.4 4276.2 4451.7
n� 7 7 7 7 7 8 8 9

Table 4 Optimal solution of Example 4

n TC i ti si

1 5534.2 1 0.0844 0.4649
2 5114.0 2 0.5523 0.9381
3 4779.5 3 1.0290 1.4204
4 4515.9 4 1.5152 1.9125
5 4320.9 5 2.0117 2.4153
6 4194.2 6 2.5195 2.9299
7 4131.6 7 3.0398 3.4576
8 4124.6* 8 3.5742 4.0000
9 4162.9

10 4237.1

TC� 4124.6
n� 8
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Substituting Mi � si ÿ ti and Ki � ti ÿ siÿ1 into (10),

and then differentiating (10) with respect to t1 yields

�C1 � C4y�eyMi f �si�
@Mi

@t1
� �C1 � C4y�

� eyMi f �si� ÿ f �ti� ÿ y
�si

ti

ey�tÿti�f �t�dt

 !
t0i

� �C2 � C3a�
�ti

siÿ1

ÿ2a

�1� a�ti ÿ t��3 f �t�dt � f �ti�
 

ÿ f �siÿ1�
�1� a�ti ÿ siÿ1��2

!
t0i

� �C2 � C3a�
f �siÿ1�

�1� a�ti ÿ siÿ1��2
@Ki

@t1
;

i � 1; 2; . . . ; n: �15�

From the analysis carried out so far, is easily shown

that �@K1=@t1� � 1 and �@M1=@t1� > 0. Next, differen-

tiating (11) with respect to t1 yields

�C1 � C4y�ey�siÿti� @Mi

@t1

� �C2 � C3a�
1

�1� a�ti�1 ÿ si��2
@Ki�1

@t1
;

i � 1; 2; . . . ; nÿ 1: �16�

Using the fact that �@M1=@t1� > 0, we can obtain

�@K2=@t1� > 0 from (16). By repeating this procedure

mentioned above, we can show that �@Ki=@t1� > 0 and

�@Mi=@t1� > 0 for i � 1; 2; . . . ; n from (15) and (16).

Moreover, since sn�t1� �
Pn

i�1�Mi � Ki�, it is easily

shown that

s0n�t1� �
@sn�t1�
@t1
�Pn

i�1

@Mi

@t1
� @Ki

@t1

� �
> 0:

Besides, it is not dif®cult to check from (10) and (11)

that sn�0� < H and that sn�H� > H. Therefore, there

exists a unique solution t�1 to sn�t�1� � H in the interval

[0, H].

(ii) The case of decreasing demand patterns is also similar.

Therefore the proof is complete.

Appendix B

(i) If f �t� is an increasing function, then T1 > T2

> � � � > Tn.

(ii) If f �t� is a decreasing function, then T1 < T2

< � � � < Tn.

Proof

First, by applying mean value theorem to integral in (10), we

have

�C1 � C4y�
y

f �x1��ey�siÿti� ÿ 1�

� �C2 � C3a�f �x2�
�ti ÿ siÿ1�

1� a�ti ÿ siÿ1�
; �17�

where ti < x1 < si; siÿ1 < x2 < ti.

(i) If f �t� is an increasing function, it is clear that

�C1 � C4y�
y

�ey�siÿti� ÿ 1�

< �C2 � C3a�
�ti ÿ siÿ1�

1� a�ti ÿ siÿ1�
; i � 1; 2; . . . ; n:

�18�
Moreover, since

�C1 � C4y�
y

�ey�siÿti� ÿ 1� � �C2 � C3a�
�ti�1 ÿ si�

1� a�ti�1 ÿ si�
;

(18) can be rewritten as

�ti�1 ÿ si�
1� a�ti�1 ÿ si�

<
�ti ÿ siÿ1�

1� a�ti ÿ siÿ1�
:

Suppose that g�x� � x=1� ax; x5 0 and a5 0.

Taking the ®rst derivative for g�x� with respect to x,

we get

d

dx

x

1� ax

� �
� 1

�1� ax�2 > 0; 8x5 0:

Hence, g�x� is a strictly increasing function. We then

have

g�xn� < g�xnÿ1� < � � � < g�x3� < g�x2� < g�x1�;
0 < xn < xnÿ1 < � � � < x3 < x2 < x1:

Let xi � ti ÿ siÿ1; i � 1; 2; . . . ; n, it is obvious to see

that

�ti�1 ÿ si�
1� a�ti�1 ÿ si�

<
�ti ÿ siÿ1�

1� a�ti ÿ siÿ1�
if and only if 0 < �ti�1 ÿ si� < �ti ÿ siÿ1�. Applying

this, we have Ki > Ki�1; i � 1; 2; . . . ; nÿ 1. From

(11) and (18), it is clear that

�C1 � C4y�
y

�ey�siÿ1ÿtiÿ1� ÿ 1� > �C1 � C4y�
y

�ey�siÿti� ÿ 1�

and �siÿ1 ÿ tiÿ1� > �si ÿ ti�; i � 2; 3; . . . ; n. We have

Miÿ1 > Mi; i � 2; 3; . . . ; n. As discussed earlier,

since Ti � Ki �Mi, we can conclude that

Ti > Ti�1; i � 1; 2; . . . ; nÿ 1.

(ii) The case of decreasing demand patterns is also similar.

Therefore, the proof is complete.
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